
AD-AIDa 585 MARYLAND UNV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/G 12/1
GENERALIZ ING SPEC IFICATIONS FOR UNIFORMLT IMPLEMENTED LOOPS U)
OCTJ 81 0 0 DUNLOP. A R BA S ILI F4962 0 MO0 C-0001

UNCLASSIFIED TA IN AFOSRT-81-791 NL

11111125 1ffl.4 .

* MIROC R(~([SOLLJIION TESIT HART

I 7<

COMPUTER SCIENCE
I

TECHNICAL REPORT SRE

UNIVERSITY OF MARYLAND
COLLEGE PARK MARYLAND

20742

Sa for ?olle %%too" I

81 12 14 086

UNCLASIFIED
ACCURITy CLASSIFICATION OF TNIS PAGE (Wi O(11.11tma-

REPORT DOCUMENTA.TION PAGE MNO OMSPCToRMSSWYORE COMPLETIG FORK
1. REPORT NUMBER ' .. GOVT ACCES.ENSION No i T$s CATALOG NUMUWR

AFOSR.TR . 8 1 s- 0 7 9 11 _D A_ .!5
4. TITLE (40d Subdfle) S. TYPE OF REPORT a PenOo COVERED

GENERALIZING SPECIFICATIONS FOR UNIFORMLY Technical Report
IMPLEMENTED LOOPS

a. PERFORMING OwGo. REPORT MUMBER

7. AUT.OROa) S. CONTRACT OR GRANT NUES'e)

Douglas D. Dunlop and Victor R. Basili F49620-80-C-0001

9. PERFORMING ORGANIZATION NAME AND ADDRESS I*. PROGRAM ELEMENT PROJECT. TASK

ARZA & WORK UNIT NUMBERS

Department of Computer Science
University of Maryland 61102F; 2304/A2
rnltlaga Psnk_ Marglan_ __ 2747_

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Mathematical & Information Sciences Directorate October 1981
Air Force Office of Scientific Research ,. NUMBEROF PAOES

Bolling AFB DC 20332 37
14. MONITORING AGENCY NAME & AOORESS(I! diervet from Cont lflin OUfico) IS. SECURITY CLASS. (o e ruepei)

Unclassified
15.. oECLASSIFICATON(DOWNGRAOING

SCNEOUL[

16. DISTRIBUTION STATEMENT (of he Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Bock 20. if difrnmt be., Report)

14. SUPPLEMENTARY NOTES

I9. KEY WORDS (Continue on rverse aide If neceesar md identity by block nninber)

program verification, valid generalization, base generalization,
uniformly implemented loop, iteration condition

20. ABSTRACT (Continue an reversesi Idt nece...ry md Identity by block mumr) The problem ot generaff 1.zlng
functional specifications for WHILE loops is considered. This problem occurs
frequently when trying to verify that an initialized loop satisfies some func-
tional specification, i.e. produces outputs which are some function of the
program inputs.
The notion of a valid generalization of a loop specification is defined. A
particularly simple valid generalization, a base generalization, is discussed.
A property of many commonly occurring WHILE loops, that of being uniformly
implemented, is defined. A technique is presented which exploits this property

DD I " AN 3 1473 EDITIoN OF I NOV 65 is OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wt,. Der Enferedl

b _ . . ,

specification. Two classes of uniformly implemented loops which are par-N

for the validation of the obtained generalization is explained.

UNCLASSIFIED

SECURITY CLASSIFICATION Oft' PA~GtElwfl 0040 £.nte.E

Technical Report TR-1116 October, 1981
S-F49620-80-C-rn

000/

Generalizing Specifications For
Uniformly Implemented Loops*

Douglas D. Dunlop and Victor R. Basili

Department of Computer Science %
University of Maryland
College Park, MD 20742

AIR FORCE. OF', CE 0F SCTENTTFIC RESEAR('7 (AUSC)
NOTICE OF T V T-'!TTAL TO DTIC
This technic-, -eport hbs been revievad uind is

approved "," ,1 -c.etse 1AW AFR 193-12.
Distrib,Aior 4 7,.unlimited.

Chief, Technical Informatio Division

*This work was supported in part by the Air Force Office of
3cientific Research Contract -F4920-30-C040l to the Uriver-
sit, of ;..arvian:1. The material contained in this paper will
become part nf a dissertation to be submitted to the Graduate
Schoo, U'niversity o5 :'aryland, by rouglas D. T unlep, i. partial
-ulfill-ment of the requirements for the Ph.",. -egree in Computer
3cience.

O Copyrig'ht 1931 by D.-. Dunlho- an"' V.1. 7asi'.i

V 1 .d

ABSTRACT

The problem of generalizing functional specifications for

WHILE loops is considered. This problem occurs frequently when

trying to verify that an initialized loop satisfies some func-

tional specification, i.e. produces outputs which are some func-

tion of the program inputs.

The notion of a valid generalization of a loop specification

is defined. A particularly simple valid generalization, a base

generalization, is discussed. A property of many commonly occur-

ring '.MILE loops, that of being uniformly implemented, is

defined. A technique is presented which exploits this property

in order to systematically achieve a valid generalization of the

loop specification. Two classes of uniformly implemented loops

which are particularly susceptible to this form of analysis are

defined and discussed. The use of the proposel technique is

illustrated with a number of applications. Finally, an implica-

tion of the concept of uniform loop implementation for the vali-

dation of the obtained generalization is explained.

-2Y? RDS and P1PASES: program verification, valid generalization,

base generalization, uniformly implemented loop, iteration condi-

tion

CZCAZGFZ 52

Generalizing Specifications For Uniformly Implemented Loops

1. Introduction

Consider the problem of proving/disproving a WHILE loop

correct with respect to some functional specification f, i.e. f

requires the output variable(s) to be some function of the inputs

to the loop. If the loop precondition is weak enough so that the

domain of f contains the intermediate states which appear after

each loop iteration, the loop is said to be closed for the domain

of f. An important result in program verification is that if the

loop is closed for the domain of its specification, there are two

easily constructed verification conditions based solely on the

specification, loop predicate and loop body which are necessary

and sufficient conditions for the partial correctness of the loop

with respect to its specification [Mills 75, tisra 78]. If the

loop is not closed for the domain of the specification function,

a generalized specification (i.e. one that implies the original

specification) which satisfies the closure requirement must be

discovered before these verification conditions can be con-

structe! (this problem is analogous to that of eiscovering an

adequate loop invariant for an inductive assertion proof [Hoare

69] of thie program).

T7e remark that the restricted specification often occurs in

the process of analyzing an initializee IFlIL2 loop, i.e. one that

consists of a -7!L7 loop preced-ed by some 4nitialization code.

This inltia'.ization t-'pically takes the for-, of ass'.nnents of

constant values to sone of the variazles manipuate' by the Tonp.

Z::a.ples incluee setting a counter to zero, a search f'ag to

Generalizing Specifications For Uniformly Implemented Loops

FALSE, a queue variable to some particular configuration, etc.

It is clear that the initialized loop is correct with respect to

some specification if and only if the WHILE loop by itself is

correct with respect to a slightly modified specification. This

specification has the same postcondition as the original specifi-

cation and a precondition which is the original precondition

together with the condition that the initialized variables have

their initialized values. Since the initialized variables will

typically assume other values as the loop iterates, the loop most

likely will not be closed for the domain of this specification

and a generalization of it will be necessary in order to verify

f the correctness of the program.

Exarmple 1 - The following program multilies natural numbers

using repeated addition:

[v>=O,k>=O1
z 0;
while v > 0 do

V :v- ".
oda)vr

iZ=vU*kj.

The term vO apoearing in the pootconcition refers to the initial

value of v. The program is correct if and only if

{z-O,v'>=Ok>=O}
while v > 0 do

Z Z +,
V : V - 2z

:z Correct. Sin~ce this loop precon'dition requires z to have the

Generalizing Specifications For Uniformly Implemented Loops

value 0 and z assumes other values as the loop executes, the loop

is not closed for this precondition. Thus, before this program

can be verified using the above mentioned technique, this specif-

ication must be generalized to something like

{v>=O,k>=O}
while v > 0 do

V := V - 1
od

{z=zO + vO*k}

where zO refers to the initial value of the variable z.

The approach to this problem suggested here is one of

observing how particular changes in the value of some input vari-

able (e.g. z in the example) affect the result produced by the

loop bodAy of the loop under consideration. Clearly in general, a

change in the value of an input variable may cause an arbitrary

(and seemingly unrelated) change in the loop boey result. In

many comomonly occurring cases, however, the result producel by

the loop bc-ly is "uniform" across the entire spectrum of possible

values for the input variable. It is this property that will be

exploitel in order to ohtain a generalized specification for the

loop being analyzed . The generalizations consi ered1 her? have

the property that the loop is correct with respect to the gen-

eralization if an(only if the loop i3 correct with respect to

the original specification. Thus i! the loop is close' Por the

.omain c! the generalization, the progran can be provcn,/isprnven

'3y t.3sting its correctness relativ2 to the genera' .zation.

Generalizing Specifications For Uniformly Implemented Loops

We remark that the general problem of finding a suitable

generalized loop specification has been shown to be YP-complete

[E.egbreit 77], i.e. it appears quite unlikely that there will

ever exist an easily applied procedure for obtaining such gen-

eralizations that will work in all cases. On the other hand,

work presented here and elsewhere [Basu & Misra 76, Misra 79,

Basu 80], indicates that generalized specifications can be

obtained in a systematic manner for restricted classes of loops.

..e feel that the notion of "uniform" loop body behavior discussed

in this :aper is valuable not only as a tool by which such gen-

eralizations may be obtained, but also as an attempt at a c'arac-

terization of loops which are susceptible to routine analysis,

and hence in this sense, easy to verify and comprehend.

The following section lefines the necessary notation anO

terin,..ogy an" then intro2uces the idea of a nerize - loop

specification. Section 3 deCines a uniformly' mpletiete: oop

an,7 tates severa! inplications of this clefinition f-r th pr&'-

ler -E generalizing a specification frr such a t. e

L-cu!ts are apphie on severa! examoe prcgramt - Sect icn r,S-Secti'n 5, a simplifier prccecure if r.. d

?v .. g . r .7jn a unifornly . Ic - '..0 ccrr ict "'l

r, ect to the o,:tainee generaization. Tin-lly, several -u'"-

lines fo recog nizr g unifor-]y imp' eente-, ocns are resento

Seftion 5.

Generalizing Specifications For Uniformly Implemented Loops

2. Preliminaries

We will consider a verification problem of the form

{<z,X> 6 D(f)}
while B(z,X) do

z,X : h'(zX),h"(z,X)
od

<z_> = f(<zO,XO>)}.

In this problem, f is a data state to data state function. The

data state consists of two variables, z and X. The notation D(f)

means the set of states in the domain of f (i.e. the set of

states for which f is defined). The terms zO and XO refer to the

initial values of z and X respectively. The effect of the loop

body is partitioned into two functions h' and h" which describe

the new values of z and X respectively.

The loop will be referred to as P. The data state to data

state function computed by the loop (which, presumably, is not

explicitly nown) will be denoted tP]. Thus D([P]) is the set of

states for which P terminates. As a shorthand notation we will

use Y for the state <z,X>, and H for the data state to data state

function computed by the loop 13ody, i.e.

°T(Y) = H(<z,X>) = <1(z,x) ,h" '(z , %)>.

Suppose the loop is not closed for D(f) in that this ret

contains only a restricted collection of values (maybe only one)

of z and that other interrediiate values of z occur as the loop

iterates. The variable z will be callee the ey variatle. Our

goal here is to discover sone nore general specification f' whic!h

J

Generalizing Specifications For Uniformly Implemented Loops

includes each of these intermediate values of the key variable in

its domain. This generalization process (in one form or another)

is necessary for a proof of correctness of the program under con-

sideration.

Definition - P is correct with respect to (wrt) a function f

if and only if (iff) for all Y in D(f), [P1(Y) is defined and

[P] (Y) =f (Y)

Definition - A superset f' of f is a valid generalization of

f iff if P is correct wrt f, then P is correct wrt f'.

Note that the collection of supersets of f is partially

J Iordered by "is a valid generalization of." The following theorem

defines one technique for constructing a valid generalization of

the specification function f.

Theorem 1 - A superset g of f whose extension is defined by

(i) ~B(Y) -> Y

is a valid generalization of f.

Proof - Suppose P is correct wrt f. Let Y G D(g). If Y E!

2(f), the loop handles the input correctly by hypothesis. if Y

is not in D(M), we -lust have 3(Y) and j(Y)=Y. Thus the program

and g map Y to itself and thus are in aqreenent. Consequently P

13 correct wrt g, and q is a valil generalization of f.

The theorem utilizes the fact that the loop must n!cessaril v

co9ute the identity function over in-uts 7:re the loop preor-

cate is fa!ae. Conbining this inormation with the program

.. . " * ' -":. 1.. _

Generalizing Specifications For Uniformly Implemented Loops

specification f results in a valid generalization of f.

We note that if there does not exist a superset g of f whose

extension is defined by (1), the theorem is vacuously true. This

would occur if an element Y from the domain of f satisfied -B(Y)

as well as f(Y)yY (this would imply that the program was not

correct wrt f). If there does exist a superset g of f whose

extension is defined by (1), the superset is unique. Throughout

this report, we will refer to the function g as the base general-

ization of the specification f.

Definition - A valid generalization f' of f is aeequate if

the loop is closed for D(f').

The important characteristic of an adequate valid generali-

zation f' is that it can be used to prove/disprove the correct-

ness of P wrt the original specification f. Since the loop is

closed for D(f'), P can be proven/disproven correct wrt f' using

standard techniques [>'ilLs 72, Mills 75, 3asu & :isra 75, "orris

& Wegbreit 77, Wegbreit 77, M'.isra 78]. Specifically, P is

correct wrt f' iff each of

(2) the loop terminates for all Y G Drf')

(3) Y G D(fC) & -2(Y) -> f'(Y)=Y

(4) Y 9 D(f) & B(Y) -> f'(Y)=f'(T(Y))

hold. If P is correct wrt f', then P is necessarily correct ;irt

a.y suLset of f', including f. If ? _F not ccrrect 'rt f', thei

'- the efinition of a valid generalizaticn, 2 must not "e

Correct ."rt _f.

Generalizing Specifications For Uniformly Implemented Loops

Example 2 - The following program tests whether a particular

key appears in an ordered binary tree.

{ success=FALSE}
while tree # NULL and -success do

if name(trelF)= key then success := TRUE
e-seif name(tree) < key t-n tree := right(tree)
else tree := left(tree) fi
od

{success = IN(treeO,key)}

The function IN(treeO,key) appearing in the postcondition is a

predicate which means "the ordered binary tree treeG contains a

node with name field key." The boolean variable success is

chosen as the key variable since it is constrained to the value

FALSE in the input specification. Thus success plays the role of

z and the pair of variables <tree,key> correspond to X in the

program schema discussed above. The specification function f is

f(<FALSE,tree,key>) = <IN(tree,!;ey) ,tree',key'>

w;here tree' and key' are the final values of the variables tree

an(. .ey computed by the loop, respectively. That is, since the

final values of these variables are not of interest in thiF exam-

ple, %-e specify these final. values so as to be automatically

correct. Using Theorem 1, a vali generalization of this specif-

ication is

I(<success,tree,'-ey>) = if ~iuccesn then

<IN(tree,key),tree',key'>

else if tree=NT!iL or success then

<success, tree, key>,

w;hich is .-uivalert to

(C(<3ucceqstree,%-y>) <success or I"(tr, ! ,ey) tree',ke. "'.

-3-

Generalizing Specifications For Uniformly Implemented Loops

In this example, the domain of the base generalization g of

f includes each value of the key variable, (i.e. FALSE and TRUE)

and is thus adequate. Consequently, this generalization can be

used to prove/disprove the correctness of the program.

In most cases, however, the heuristic suggested in the

theorem is insufficient to generate an adequate generalization.

Indeed, the base generalization is an adequate generalization

only in the case when the sole reason for the closure condition

not holding is the existence of potential final values of the key

variable (e.g. TRUE in the example) which are absent from D(f).

In order to obtain a generalization that includes general values

cf the key variable, an important characteristic of the loop body

which seems to be present in many commonly occurring loops will

be exploited.

3. Uniformly Implemented Loo

-efinition - Let ? be a loop of the form described above.

Let A be a set, and let Z be the set of values the key variable z

may assume. Let

A :X Z -> Z

he an infix bin:.ry operator. The loop 2 is unifcrm'y .leent-1-

•.:ith respect to (wrt) $' iff each of

(5) T3(z,X) -> h (a $,X) - a $ h' (z,X)

(3) Dz,X) -> h'(a $:,X) ='

h o

Generalizing Specifications For Uniformly Implemented Loops

Conditions (5) and (6) of this definition state that a

modification to the key variable by the operation $' causes a

slight but orderly change in the result produced by the loop

body. The change is slight because the only difference in the

result produced by the loop body occurs in the key variable.

This difference is orderly because it corresponds precisely to

the same $' operation that served to modify the input value of

the key variable. Condition (7) specifies that such a modifica-

tion does not cause the loop predicate B to change from TRUE to

FALSE.

As a shorthand notation we define the infix operator $ as

a $ Y = a $ <z,X> = <a $' z,X>.

In this notation (5)-(7) are equivalent to

(8) B(Y) -> a $ H(Y) = H(a $ Y)

an,]

3(Y) -> B(a $ Y).

Example 3 - Consider again the program from Zxample I -.hich

multipies natural nunbers using repeatel addition:

tz=O,v>=O,k>=O}
"7hile v>O r'o

Z Z + k;
v v - 1
od

tz=v*k }.

:Let z be the key varifab.e. The pair <v,k> corresponis to the

vartia'le . occurring in the above schena. The loo: is un!for-'.y

implemented ,'rt +, :Thcre N ;%- Z ar. both the cet of natIral

-10-

Generalizing Specifications For Uniformly Implemented Loops

numbers. Note that adding some constant to the input value of z

has the effect of adding the same constant to the value of z out-

put by the loop body. Now consider the following alternative

implementation of multiplication:

{z=O,v>=O,k>=O}
while v>O do

if z<k ten z := z + k
eTseif --- then z := z * 2 * v
else z := z - k fi;
v := V - 1
od

{ z=-v*k}.

Again, let z be the key variable. This loop is not uniformly

implemented wrt +. Intuitively, this is due to the high degree

of dependence of the loop body behavior on the value of the key

variable. The result of this dependence is that adding some con-

stant to the value of z causes an unorderly change in the value

of z output by the loop body.

The reader may londer if the second multiplcation program

above might be uniformly implemented wrt some operation other

than +. W;e remark that anv loop is unifornly imp.emente.i wrt S'

:A : Z -> Z defined by

a ? = Z

for all a G A ana z e Z. Por the purpose of this report, we rule

out such trivial operations, i.e. re require that for any z C Z,

there exists scme a q A such that

a $' z # z.

"ith this assunptionr, there "oes not exist an opiratior ''rt '7hih

the second of the n'jovC loops is uniforn'y inrlenentaO (or' ,ore

-!!-

Generalizing Specifications For Uniformly Implemented Loops

briefly, the loop is not uniformly implemented). To see this,

suppose the loop were uniformly implemented wrt $A : A x Z -> Z.

Select z=O, a e A such that a $A 0 4 0, and k=a $A 0. We evalu-

ate condition (5) as follows:

B(z,X) -> h'(a $ z,X) = a $A h'(z,X)

i.e. v > 0 -> h"(a $ 0,<v,k>) = a $ h'(0,<v,k>)

i.e. v > 0 -> h'(k,<v,k>) = a $ h'(0,<v,k>)

i.e. v > 0 -> k*2*v = a $ h'(0,<v,k>)

which implies

v>0 & k>0 -> k*2*v = a $" k.

Since the term k*2*v will vary with different values of v where k

is positive, and a $' k is independent of v, this condition is

false and thus (5) does not hold. We conclude that the second

multiplication program above is not uniformly i'mplemented. That

is, there does not exist a nontrivial modification that can be

applied to the variable z which al.,,?ays results in a slight and

orderly change in the result produced by the loop body.

The results presentedI here are based on the follow.ng '_mna

concerning uniformly implemente1 loops. The lerma describes the

output of the loop for some modifiedl input a $ Y (.e. [?](1 $

Y)) in terms of the output o the loop for the in-ut Y (i.e.

fPl(Y)) and the output of the loop for the input 3 $ [P1(Y) (i.e.

[Pfla $ [P](Y))).

Le:ma 1 - Let P 3e uniformly irpisnent-" wrt $. '"-

(0) Y 1 D([1) -> [P I(a $ Y)=[P I(a $?] (Yl.

!A

- :7--....

Generalizing Specifications For Uniformly Implemented Loops

Proof - We use induction on the number of iterations of P on

Y. For the base case of 0 iterations, [P] (Y)-Y, ani the lemma

holds. Suppose it holds for Y values requiring n-i iterations

where n > 0. Let Yl require n iterations. Since n > 0, B(Y1)

holds. By (7), B(a $ Yl). Note that TI(Yl) requires n-i itera-

tions on P; thus by the inductive hypothesis

[PI(a $ H(Yl)) = [P](a $ [P](H(Yl))).

Due to the uniform implementation this is

[P] (M(a $ Yl)) = [P] (a $ [P] (H(Yl))).

Using the loop property B(Y) -> [P](Y)=[P] (H(Y)) on both sides we

get

[P] (a $ Yl) = (P] (a $ [P] (Yl)).

Thus the inductive step holds and the lemma is 2roved.

The general idea behind our use of the lemma is as follows.

Suppose the value [P] (Y) is known for some particular Y. I.e.

suppose we know what the loop produces for the input Y. In addi-

tion, suppose that, given the result [P1 (Y), the quantity (P1 (a $

[P] (Y)) is also known. with this information, we can then use

Lemma 1 to "solve" for the (possibly unknown) value (P] (a $ Y).

Th'is additional information concerning the input/output behavior

of the loop can be used as an aid in constructing a valid gen-

eralization of the specification f.

7ow can we find the value [P] (Y) an ,! then the value [P] (a $

[nl(Y)) for some Y? The key lies in assuming the loop P is

zorrect wrt f. Tf P is not correct wrt :, 2a ger eralizaticn of

F obtained by the technique will be a vili-, generalization .y

-13-

Generalizing Specifications For Uniformly Implemented Loops

definition. Under this assumption, [P] (Y) is known for Y 0- D(f),

i.e. Y e D(f) -> [P](Y)=f(Y), and hence Lemma 1 implies

(10) Y e D(f) -> [P](a $ Y)=(PI(a $ f(Y)).

Consider now the base generalization g of f defined in

Theorem 1. Recall that g is simply f augmented with the identity

function over the domain where the loop predicate B is false.

Assuming as before that P is correct wrt f, P is then correct wrt

g by Theorem 1; hence Y e D(g) -> EP](Y)-g(Y). Thus (10) implies

(11) Y 6- D(f) & a $ f (Y) G D (g) - > [P]I(a $ Y) =g (a $ f (Y)) .

Thus we can nsolve" for the behavior of the loop on the input a$

Y, assuming Y e D(f), a $ f(Y) e D(g) and P is correct wrt f.

This suggests that the superset f' of f whose extension is

defined by

(12) Y G !)(f) & a $ f (Y) e D (g) - > f '(a $ Y) =q(a $ f (Y))

is a valid4 generalization of f. Defore giving a formal proof of

th~is result, however, we first consider the question :)f the

excistence of such a superset. Specifically, it coulr' b.e that for

some a and Y satisfying Y e D(f) and a $ f(Y) q D(g), that a $ Y

SD(f) and f(a $ Y) # g(a $ f(Y)), which wou]&l imply f(a $Y)

fo(a $ Y). in this case, a valid generalizatior. of IL b-ase, rnn

(1)cannot exist (it ,%ou!(, have to be ambiguously lef in id) .- (

followin~g theorem states that this implies P i.s not correct .7t

E.

v~rm2 - If P is correct wrt ftherp a%4.t3 Z 1~st

Sof F w hose oxt-3nsion i5 def9;ine-! by(1)v i., .

Y E3 r) f 3 (Y) 0 (g) -> E(a Y) =g(f Y

Generalizing Specifications For Uniformly Implemented Loops

Proof - Let f' be the function computed by the loop, i.e.

[P]. Since P is correct wrt f, P is correct wrt g, and f' is a

superset of both f and g. By the lemma

f'(a $ Y) = f'(a $ f'(Y))

for all Y e D(f). Since C(Y)=f(Y) for Y e D(f) and f'(Y)-g(Y)

for Y e D(g), (12) holds. The subset of f' which contains f and

whose extension is defined by (12) satisfies the theorem.

The following theorem is the central result presented here.

The theorem formalizes the use of Lemma 1 in the manner suggested

above, i.e. that the superset described in the previous theorem

is a valid generalization of the original specification.

Theorem 3 - A superset f' of f whose extension is defined by

(12), i.e.

Y G D(f) & a $ f(Y) e D(g) -> f'(a $ Y)=g(a $ f(Y)),

is a valid generalization of f.

Proof - Suppose P is correct wrt f. Let Y q D(f) and a $

f(Y) e D(g). By Lemma 1 [P](a $ Y) = [PI(a $ [P](Y)). Since P

is correct wrt f this is [P] (a $ Y) = [P] (a $ f(Y)). By Theorem

I, P is correct wrt g. Using this, the equality can be written

as [P1 (a $ Y) = g (a $ f (Y)) . Substituting using (12) yiel 7s

[P (a $ Y) = fC(a $ Y). Thus P and C are in agreement on the

inout a $ Y and consequently are in agreement on any inout in

D(f') . Hence ? is correct wrt E' anJ thus f' is a valid general-

izati-3n of C

Generalizing Specifications For Uniformly Implemented Loops

The significance of Theorem 3 is that it provides a guide-

line for generalizing the specification of a uniformly imple-

mented loop. If the loop is closed for the domain of the result-

ing specification, the generalization can then be used to

prove/disprove the program correct wrt the original specifica-

tion.

4. Applications

In this sect!.,. we illustrate the use of Theorem 3 with a

number of example programs which fall into either of two

subclasses cf triformly implemented loops. The subclasses

correspond to the two possible circumstances which can occur when

a $ f(Y) of condition (12) belongs to the set D(g): the first,

because -B(a $ f(Y)), and, the second, because a $ f(Y) G D(f).

In each of these situations, condition (12) takes on a

particularly simple form.

Definition - A unifor-mly implemented loop satisfying

-2(Y) -> ~B(a $ Y)

is a 2ate A loop.

hbserve thiat this condition along with (7) in-_-ates that a

Type A uniformly implemented loop satisfies

B(Y) <-> B(a $ Y),

i.e * te value of t!he loop predicate 2 is irneperan of a change

to the data state by the operator $.

-1---

Generalizing Specifications For Uniformly Implemented Loops

The intuition behind a Type A uniformly implemented loop is

as follows. Whenever an execution of a Type A loop terminates

(i.e. -B(Y) holds) and the resulting data state is modified by

the operator $, the result is a new data state which, when viewed

as a loop input, corresponds to zero iterations of the loop (i.e.

the predicate B is still FALSE despite the modification). This

property is reflected in the following corollary.

Corollary .1 - Let P be a Type A loop. A superset f' of f

whose extension is defined by

(13) Y G D(f) -> f-(a $ Y)=a $ f(Y)

is a valid generalization of f.

Proof - The proof consists of showing that (12) and (13) are

equivalent for a Type A loop which is correct wrt f. By Theorem

3, the corollary then holds. Let P be a Type A loop which is

correct wrt C. A consequence of the correctness property is that

~B(f(Y)) for all Y e D(f). Since P is a Type A loop, this im-

plies -3(a $ f(Y)). Thus a $ f(Y) e D(g) and g(a $ f(Y))=a $

f(Y). Consequently (12) and (13) are equivalent.

O course, once a generalization " has been cbtaine via

Ccrollary 1, there is no reason ihy that result cannot be fec

back into the corollary to obtain a (possibly) further generali-

zation f'' (using f' for f, fo' for f'). This notion suggests

the followzing general case of Coro!ary 1.

Corollar" 2 - Let P he a 71y7e A loo2. A superset "c£ f

4)iose s::tension 43 .efined by

-17-

I

Generalizing Specifications For Uniformly Implemented Loops

Y e D(f) & n>O ->

f"(al$(a2$... (an$Y) ...))=al$(a2$... (anSf(Y)) ...

is a valid generalization of f.

Example 4 - Consider the following program to compute ex-

ponentiation.

{w=lc>Od>=O}
while d > 0 do

if odd(d) then w := w * c fi;
c-:= c*c; 37;/2
od

fw=cU- ^ dol

The infix operator ^ appearing in the postcondition represents

integer exponentiation. In this example, w plays the role of the

key variable z, and the pair <c,d> corresponds to the variable X.

We now consider wrt what operation the loop might be uniformly

inplemented. For any operation $', (7) holds (because w does not

appear in the loop predicate) as does (6) (because the values

produced in c and d are independent of '). Furthermore, (5) must

hole for inputs which bypass the up'atinq of w. 'hus the unifor-

mity conditions reduce to

I > 0 & odd(d) -> (a $;,) * c = a $ '- * c)

7ue t3 its associativity, it is clear the loop i unifor-ilv in-

ae-nented wrt *, where the sets A and Z are the set of i.tegere.

Since the key variable Iois not appear in the loop irelicate, it

i3 necessarily a 'ype A Thop. Let c>O and]>=O. The socific -

tior, =unction Y.ir- is

-(,c,2>) = <c a ta' ,.e y

• ,;here c and c" are the fina' va'.ues co- ute hy the '.oop fcr the

-13-

(II

Generalizing Specifications For Uniformly Implemented Loops

variables c and d. Applying Corollary 1,

f*(<a*l,c,d>) = <a*(c ^ d),c, '>

is a valid generalization of f. Since this holds for all a, the

definition of f' can be rewritten as

f'(<w,c,d>) = <w*(c A d),c',d'>.

The generalization f' is adequate and can thus be used to test

the correctness of the program wrt the original specification.

Applying (2), (3) and (4) from above, these necessary and suffi-

cient verification conditions are

- the loop terminates for all c>O, 7>=O,

- d=0 -> w=w;*(c d), and

w*(c ^ d) is l loop constant (i.e. cO A d0 = w*(c ^ c) is

a loop invariant),

res2ectively. In qection 5, we will discuss a simplification of

the last of these verification conilitions wich applies for uni-

formly implen.ented !oops.

Exam!e 5[Iisra 7C' - The fo!lnh,.ing prsgra- constructz the

-reor 'er traversa] of a binary tree ,7ith root node r. The -r-

jra-, a ::tack var--ble st recc -fr th. travercal a

st=(r) I* stack st ccnt:*ns only te root r
W},.. t / TP'-Z'"' o

< t /* .or,. the top Of! tile sttc *
n :=/ on); c* concatenate name o! 2 to rt,-',.'

__ . () / :'TL ten !-t <= r-*lt() ; f 4- on to

2n (,) appear: ~g in ' :. e ;. t .. . '.z'- th

- -I -

i n l . .. li il I I- -

Generalizing Specifications For Uniformly Implemented Loops

sequence consisting of the preorder traversal of the binary tree

with root node r. Let seq be the key variable. The same reason-

ing employed in the previous example indicates here that the loop

is uniformly implemented wrt II, where the sets A and Z are the

set of all strings. It is a Type A loop. The specification

function is

f(<NULL,(r)>) = <PREORDER(r),stA>.

Again, the ' notation is used to represent the final values of

variables that are of no interest. Applying Corollary 1 we ob-

tain

-(<seq, (r)>) = <seq jPREORDER(r),st>

as a valid generalization of f. In this case, f' is not adequate

since it does not specify a behavior of the loop for arbitrary

values of the stack st. we will return to this example after

considering another subclass of uniformly implemented loops.

Definition - A uniornly implemente! loop satisfying

-B(Y) -> a $ Y c D(f)

is a ype B loop.

The intuition behinl a Tyoe B unifornly illeente: !oon

a s follows. '7henever an 3xecution of a Type 3 oo terminat,:s

(i.e. ~:(Y) holds) and the resulting data otate is mo-ifie- by

the operator $, the result is 3 new (ata state which is a "valid"

starting point for a new e:xecution of the loop (i.e. this ne-o

state i in D(f)). This nronerty is reflected in the fol o1win3

c .orol ary.

-20- !

Generalizing Specifications For Uniformly Implemented Loops

Corollary 3 - Let P be a Type B loop. A superset fV of f

whose extension is defined by

(14) Y e D(f) -> f'(a $ Y)=f(a $ f(Y))

is a valid generalization of f.

Proof - The proof consists of showing that (12) and (14) are

equivalent for a Type B loop which is correct wrt f. By Theorem

3, the corollary then holds. Let P be a Type B loop which is

correct wrt f. A consequence of the correctness property is that

-B(f(Y)) for all Y e D(f). Since P is a Type B loop, this im-

plies a $ f(Y) G D(f). Thus a $ f(Y) e D(g) and g(a $ f(Y))=f(a

$ f(Y)). Consequently (12) and (14) are equivalent.

As before, a general case of this corollary can be stated

which corresponds to an arbitrary number of its applications.

Corollary 4 - Let P be a Type 3 loop. A superset of f

-,hose extension is defined by

Y P D(f) & n>i ->

f'(ai$(a2$(...$(an$Y) ...)))=f(al$f(a2$f(..$f(an$f(Y))...)))

is a valid generalization of f.

Z:4a:ple r (continued) - -'e now consider the problem. oF

further generalizing the derivel specification in the previous

example. 'he variable for which the loon is not closed, st, will

now be the key variah!e. Consider an operation a $' st that has

the effect of alreing an element a to the stack st. Before brg

more nrecise about this operation, w*e conrider how the ioo hod1

norks, an" how its output 2ersends on the value of the !;ay vnri-

Generalizing Specifications For Uniformly Implemented Loops

able st.

We observe that the loop body behavior relies heavily on the

characteristics of the node on the top of the stack. Consequent-

ly, a modification a $' st to st which pushed a new node a onto

the top of st would not cause a slight and orderly change in the

result produced by the loop body and the uniformity conditions

(5)-(7) would not hold. However, because the loop body behavior

seems to be indepeneent of what lies underneath the top of the

stack, we suspect the loop is uniformly implemented wrt ADDUTDER,

where A is the set of binary tree nodes, Z is the set of stacks

of binary tree nodes, and a ADDUNDER st is the stack that results

from adding a to the bottom of st. Conditions (5)-(7) for this

operation indicate that, indeed, this is the case.

Let f be the generalization f' from the previous example.

In keeping with the convention described above, since st is now

the key variable, we will reverse the order in which the two

variables appear in the d-ata state, i.e. we -iill write <st,seq>

instead of <seq,st>.

Tbe program is a 'ype B uniformly implemented loon since

it=E'!?TY -> <a ADDTDER st,seq> G D(f)

where a is a nole of a binary tree, and specifically

(15) st=Zi':PY -> f(<a ADDOU70R st,sec>)=<st *,sej IOZYZr(a)>.

Applying Corollary 4, if (r,an, ... ,al) is an arbitr-ry stac%:

(wit> : on top, al on the hotton)

,al),seq>) =

-22-

Generalizing Specifications For Uniformly Implemented Loops

f'(al$(a2$(... $(an$<(r),seq>) ...))) =

f(al$f(a2$f(... $f(an$f(<(r),seq>)) ...))) =

f(al$f(a2$f(... $f(an$<st,seql IPREORDER(r)>) ...))

Recall that st' refers to the final value of st computed by the

loop. The loop predicate indicates this will always be the value

EMPTY. Hence (15) can be applied from inside out giving

f(al$f(a2$f(... $<st',seqlIPREORDER(r)IIPREORDER(an)> .-)

<st',seqI PREORDER(r)IIPREORDER(an) Ii ... IIPREORDER(al)>.

This resulting specification can be used to prove the correctness

of the program.

Example 6 [Gries 79, - The following program computes

Ackermann's function using a sequence variable s of natural

numbers. The notation s(l) is the rightmost element of s and

s(2) is the second rightmost, etc. "he sequence s(..3) is s with

s(2) and s(1) removed.

{ s=<m, r,> ,m>=O, n>-O }
;hile size(s) 1 1o

i s(2)=0 then s:=s(..3) <s(1)+l>

elseif s(1)=O Then s:=s(..3) <s(2)-l',1>
else s:=s(..3) <s(2)-Is(2),s)-l> f

{s--<A (.n, n) >}

The function A(m,n) appearing in the postcondition in Ac',ermann's

function. The speci.ication function is

f (<s (2) ,s (1) >) =<A(s (2) ,s ())>.

Let s be the key variahle. As te ! .)o is-

:ent oF the eftmost portion of s, the onn is uniformly inp .-

-21-

Generalizing Specifications For Uniformly Implemented Loops

mented wrt it where A is the set of natural numbers, Z is the set

of sequences of natural numbers, and als = <a>I Is. The program

is also a Type B loop. By Corollary 4,

f' (<s (n),s (n-1) , .. . ,s(1) >) =

f'(~n$(~nl)(.. $(s(3)$.cs(2) ,s(l)>) ...))

f(s(n)$f(s(n-l)$f(... $f(s(3)$f(<s(2) ,s(l)>)) ...))=

f(s(n)$f(s(n-l)$f(... $f(s(3)$<A(s(2),s(l)>)..))=

f(s(n)$f(s(n-l)$f(... $f(<s(3),A(s(2),s(l))>) .))=

f(s(n)$f(s(n-l)$f(... $<A(s(3),A(s(2),s(l)))>..

<A(s (n) ,A(s (n-l) , . A(S (3) ,A(s (2) ,s(l))) . . .))

is a valid generalization of f.

5. Simplifying the 'Iteration Condition'

The view of WHILE loop verification presentee here is one of

a two step process, the first step being the discovery of an ale-

quate valid- generalization C' of the loop specification f, the

secon-1 being tie proof of 3 basic conditions (i.e. (2)-(4)) basel

on thiis generalization. we have seen that the uniform nature of

a loon inplementation may 'be used in the first ste:) as an aia in

Hi-covering -nn appropriate gener-alization. In this section, !-e

will exploit the same loop characteristic to substantially sim-

*?lify one of the conditions w~hich must be proven in the secon,

step of this process.

The ve ri-Fication condition of interest is9 (4) i:-ove, i.e.

Y e :)(f') &3(Y) -> f'(Y)=f'(H(Y)),

-24-

Generalizing Specifications For Uniformly Implemented Loops

and is labeled the iteration condition in [Misra 78]. This con-

dition assures that as the loop executes, the intermediate values

of Y remain in the same level set of f', i.e. the value of f" is

constant across the loop iterations. Previously we argued that

if P is uniformly implemented wrt $', a change in the key vari-

able by $' causes a slight but orderly change in the result pro-

duced by Ii. Roughly speaking then, the behavior of H is largely

independent of the key variable. If f' is chosen so as to be

equally independent of the key variable, and the above condition

holds for Y=<z,X> where X is arbitrary but the key variable z has

a specific simple value, we might expect the condition to hold

for all Y. Such an expectation would be based on the belief that

the truth or falsity of this condition would also be largely in-

dependent of the key variable.

1we formally characterize this circumstance in the following

definition.

Pefinition - Let P !e a loop of the form describe above. A

generalization f" of f is represented b f iff

(13) Y G n(f) & Z(Y) -> f (Y)=f, (IT (Y)

(17) Y 9 n(f') & B(Y) -> f"(v)=fA(F(Y)).

Thus il " is represented by f, condition (16) can be use-'

in place of thi iteration condition (17) in proving the loop is

correct w:t f' (and hence wrt f). The significance of this si-

tuation is that the iteration condition can be testee ,,ith the

i -25-

L -1

Generalizing Specifications For Uniformly Implemented Loops

key variable constrained by initialization (as prescribed in

D(f)). In practice, the result is one of having to prove a sub-

stantially simpler verification condition.

The following theorems state that the use of Corollaries 2

and 4 lead to generalizations which are represented by the origi-

nal specification.

Theorem 4 - Let P be a Type A loop. Suppose f' is the valid

generalization of f defined in Corollary 2. Then f' is

represented by f.

Proof - Suppose (16) holds and select some arbitrary Y' from

D(f') satisfying B(Y'). Thus there exists al, ..., an 9 A, n>=O

and Y G D(f) such that

Y'= al$(a2$(... $(an $ Y) ...

3v the definition of a Type A loop, we must have B(Y). Applying

the d'efinition of f' yields

'(Y')=al_$(a2$(... $(an$f (Y) . .)

,rhici is

=ai$(a2$(... $(an$f'(H(Y)) ...)

by (16) since '2(Y) hol!-s. Sine H(Y) r P(f'), there exists bl,

G N, 7>=O, and Y1 G D(G) such that

'I(Y) =b1$(b2$(... $(bm$ Y1) ...

Fur ther-tore,

sr.: , cz'nt rnu.jin fro abcve

-2r)-

Generalizing Specifications For Uniformly rmplemented Loops

which is

-f'(al$(... $(an$(bl$(... $(bm$ Y1)

from the definition of f'. Thus

f"(Y')-f* (al$(... $(an$H(Y)) ...

which is

... $(an$ Y) ...

from the uniformity condition (8). Hence

f- Wy)=- (II(Y))

and the theorem is proved.

Theorem 5 - Let P be a Type B loop. Suppose f' is the valid

generalization of f defined in Corollary 4. Then f' is

represented by f.

Proof - Suppose (16) holds and select some arbitrary Y' from

Dif') satisfying D(Y'). Thus there exists al, ..., an 9 A, n>=O

and Y G D(f) such that

Y'= al$(a2$(... $(an $ Y) ...

:e make the assumption that E(Y). Otherwise, by the definition

of a Type B loop, the term an $ Y can be replaced by another Y P

D(f). lince 1(Y'), this process can be continue, until Y' is

written in the forn above, with Y 9 D(f) anI B(Y). A~pyirg the

-efinition of f' yields

f'(Y')=f(a$f(a2$f(... $f(an$f (Y)) ...

which is

(- ! (a f ... $f(an$f*(-I(Y))) ...

)y (.5) sinc _ 3 (Y) hcl1s. Since "?(Y) e D(f'), there exists hl,

.,. A, m>, 2nd YI . ,(f) such that

-27-

Generalizing Specifications For Uniformly Implemented Loops

H(Y) =bl$(b2$(... $(bm$Yl) ...).

Furthermore,

fA(i(Y))=f(bl$f(b2$f(... $f(bm$f(Yl))

Hence, continuing from above

fO(YV)f(al$f(... $f(an$f(bl$f(... $f(bm$f(Yl))

which is

=f' (al$(... $(an${bl$(... $(bmSYl) . .)) ..)

from the definition of f'. Thus

f*(Y')=f' (al$(... $(an$H(Y)) ...)

which is

=f'(H(al$(... $(an$ Y) ...

,from the uniformity condition (8). Hence

f I (YI) =f" {* (YO))

and the theorem is proved.

Example 7 - Consider the exponentiation progran of E'-ample

4. The generalization obtained from Corollary 2 is

Since f' is represented by f, the iteration condition correspon3-

ing to (1G)

-1>0 & odd (1) -> c^ = c*((c*c)^(d/2)) &

15>0 & even(:') -> c^I = (c*c)^(4/2)

can be used in place of that corresponing to (17)

e>0 & o-II (d) -> .* ('5) = (,.*c) * ((cc) " (/2)) &

4>' & even(4) -> ,,*(c~.) = ,^,* (c*c) (

The henefits of t)is s ipf'aicatir a re more strikini -or more

conp'e:: types of key variables. To illustrate, consirer the pro-

: -,- - z_ -

Generalizing Specifications For Uniformly Implemented Loops

gram to compute Ackerrnann's function in Example 6. The generali-

zation obtained from Corollary 4 is

f'(<s(n),s(n-1), ... ,s(l)>) =

<A(s(n),A(s(n-i), ... ,A(s(3),A(s(2),s(1))) ...))>.

Since f' is represented by f, the iteration condition

m=O -> <A(m,n)>=<n+l> &

m#0 & n=O -> <A(m,n)>=<A(m-l,l)> &

i#O & nO -> <A(m,n)>=<A(-l,A(m,n-l))>

can !be used 4in place of

(2) = ->

<A"(s(n),A(s(n-!), .. A(s(3),.P(s(2),s(l))) ...))>=

<A(s(n),A(s(n-i), ... ,A(s(3),s(1)+1) ...))> &

s(2)0 & s(1)=C ->

<A(s(n) ,A(s (n- 1),

< A (z(n),A (s(n -l) . . , (3),A (s(2) -1 , 1)) .)

< s ,) ((n)-(!), . . , ((3),A ((2),:')) . .) >

.. . •1, n, (Z) UrZrm zt ' M ...

7nj:L .,n rc>.e. 1, C- v

.i- -r. t u Y L f

. . . . in a 2,rge , '- o it'--t cr..

Generalizing Specifications For Uniformly Implemented Loops

straint on this operation. An effective strategy, therefore, is

to use (5) as a guideline to suggest candidate operations. Con-

ditions (6) and (7) must be proven to show the loop is uniformly

implemented wrt some particular candidate.

Often the modification to the key variable z in the loop

body is performed by a statement of the form

z := z # g(X)

for some dyadic operation # and function g. In this case, condi-

tion (5) suggests the loop may be uniformly implemented wrt # or

some directly related operation. For example, if # is associa-

tive, condition (5) holds for #. If # satisfies

(a # b) # c = (a # c) # b

(e.g. subtraction), and an inverse # of # exists satisfying

a # b = c <-> b V c = a

(e.g. a-ldition if # is subtraction), condition (5) holds for 4.

Another commonly occurring case is when the future values of

the key variable z are indepenlent of X, i.e.

h'(z,Xl) = h'(z,X2)

for all z, X1 ani X2. This situation arises most frequently when

z is scme cata structure -.,hich varies dynami-a1_ Ls the 1 ho.

iterates. Typically, there exists some particular aspect or por-

tion of the data structure (e.g. the ton of e stack, the enO of a

sequence, the leaf nodes in a tree) which gui-les its motlifica-

tion. P useful heuristic which can be np1oyed in this cir-

cu27stance is to consider only operations which maintain (i.e.

%sin invariant) this particular asnect of the data structure.

-30-

V I -

Generalizing Specifications For Uniformly Implemented Loops

Selecting such an operation $ guarantees that the "change" ex-

perienced by the data structure in the loop body will be indepen-

dent of any modification $' and thus insures condition (5) holds.

In any case, recognizing uniformly implemented loops and

determining the operation wrt which they are uniformly implement-

ed is often facilitated if the intended effect of the loop body

(as regards the key variable) is documented in the program source

text. Such documentation abstracts what the loop body does from

the method employed to achieve this result and thus makes

analysis of the loop as a whole easier.

To illustrate, consider the following program to compute the

maximum value in a subarray a[i..nl of natural numbers:

m : 0;
while i <= n do

if m < a[i-then m := atil fi;

od
Im =.

If the effect on m in the loop body were documented as

m := MAX(m,a~i]) ,

its upe~ating would be of the form n := T 4 a[i] an! the hieuristic

,1iscusse.-I above could be eployed to help -.,etermine that thp Icon

is uniformly implemented wrt # 1AX.

7. Relate, w'ork

The first w:ork on generalizing functio.al specifications '-or

!ncps appears in [3asu & Misra 761. These renults are raei-el in

-31-

Generalizing Specifications For Uniformly Implemented Loops

[Misra 78] and are studied in considerable detail in [Misra 79].

The major contribution of this research seems to be the identifi-

cation of two loop classes or schemas which are "naturally prov-

able." The first class is called the accumulating loop schema

and can be viewed as a (commonly occurring) special case of the

Type A loops discussed here. Specifically, a program in the ac-

cumulating loop schema with associative binary operation $' in

the sense of [Basu & Misra 76] is necessarily uniformly imple-

mented wrt $' and meets the criterion for a Type N loop presented

here.

The second of these classes is called the structured data

schema. A loop in this class is uniformly implemented wrt an

operator which adds an element to the data structure being pro-

cessed in such a way that it is not the "next" element to be re-

moved from the structure (e.g. recall the use of ADD3UDER in the

tree traversal example). A loop in this class necessarily meets

the criterion for a Type B loop presented here. The program to

compute Ackernann's function does not fit in the structured data

schema. We remark that the analysis presented here relies on thi

loop body computing a function, i.e. it relies on the loop body

hbing !eterministic. Consequently, the above comments do not an-

ply to the non-leterministic structured data loops analyze! in

::isra 79].

In .1"isra 79) the author states that the important common

feature between these -rogralr classes is that " ... they act unon

2ata in a 'uniform' nanner; changes in the input data leal to

-32-

Generalizing Specifications For Uniformly Implemented Loops

certain predictable changes in the result obtained." The work we

have described can be viewed as an attempt to characterize this

commonality and to generalize the work in [Misra 79] based on

this characterization.

More recently, [Basu 80] considers the problem of generaliz-

ing loop specifications and uses the idea of a loop being "uni-

form over a linear data domain." One difference between this

work and that presented here is that Basu considers only programs

in the accumulating loop schema (in the sense of [Basu & Misra

76] without the closure requirement). More importantly, Basu's

idea of uniform behavior is based on the behavior of the loop as

j a whole and seems to be largely independent of the loop body.

Our approach relies solely on the characteristics of the loop

body.

n!isra points out in [Misra 78, Misra 79] that the iteration

condition for his structured data schema can be simplified in a

manner similar to that presenteI here; our results show that the

same simplification can be aoplied to his accumulating loop sche-

ma. Again, an appropriate vie. of our research is one of ger-

eralizin this earlier wor: by in estigatinm 'he theory .hic> un-

derlies these phenomenon.

3. Summary an.! Conclusions

It is felt that the :,ey to realing, underst'.ndinq n' veri-

fying progra loops is gjeneralizingj the bh-.vi3r of the loop over

a restricted set of innuts to that over a- more general s-t of in-

-33-

Generalizing Specifications For Uniformly Implemented Loops

puts. The view of this generalization process presented here is

one of ascertaining how changes in values of particular input

variables affect the subsequent computation of the loop. This

process is facilitated if these changes correspond to particular-

ly simple modifications in the result produced by the loop body.

Of course, the simplest possible modifications in the result

produced by the loop body would be no modifications at all, i.e.

the output of the loop body (and hence the loop) is completely

independent of changes in these input variables. This situation,

however, occurs rarely in practice since it implies that the in-

put values of these variables serve no purpose in view of the in-

tended effect of the loop. It is felt that the definition of a

uniformly implemented loop presented here is the "next best" al-

ternative, and yet a large number of commonly occurring loops

seem to possess this property. The definition states that in

terms of the execution of the loop body, prescribed changes in

the input value of the key variable affect on!y the final value

of the key variable; all other final values are inrenendent of

the change. Just as importantly, the mollification caused in the

'inal value of the %ey variable is necessarily the salle as the

ch;ange in its corresponding input value. This property is analo-

gout to that iossesse! by a function of 1 variable with unit

slope in analytic geometry: increasing the input argunient by

eno Torztant causes the function value to ne increased by exact-

" tve sane quantity. Taen toqether, these factcrs acccunt fcr

th sing symmetry h-t-.een S an' IT in con itien (3).

-34- A !

Generalizing Specifications For Uniformly Implemented Loops

Viewed as a verification technique for uniformly implemented

loops, the procedure described here can be thought of as

transforming the problem of discovering the general loop specifi-

cation into the problem of discovering the operation with respect

to which the loop is uniformly implemented. Clearly, this is of

no benefit if the latter is no easier to solve than the former.

In many cases, however, it seems that simple syntactic checks are

sufficient for identifying this operation. For example, in the

tree traversal program, the fact that the loop body does not test

the stack for emptiness [Basu & misra 76] is a sufficient condi-r tion for the loop being uniformly implemented with respect to

A)DU1TD.ER.

It is felt that the notion of uniformly implemented loops

may have an application in the program development process.

Specifically, when -lesigning an initialized loop to compute some

function, the programmer should attempt to construct the loop in

such a way that it is uniformly implemente- with respect to scm

easily stated operatior.. Our work inricates that these loops are

susceptible to a rather routine form of analysis. Furthermore,

implementing a loop in a uniform fashion -equires maintainingir a

certain amount of ind-ependence between procran variables (or

perhaps portions of program variables in the caie of structures)

an4 a simple dependence between the in-ut/cutput values comouted

hey he 0 op o-v. Such programs are 'eesirable since t'V, ease

with ,'hich a locp cin !e unersltoo, iepenis Targely n t com-

plexity of the interactions an. interccnnections .;mong program

-35-

Generalizing Specifications For Uniformly Implemented Loops

variables. We remark that the question of whether a given pro-

gram is "well structured" has been viewed largely as a syntactic

issue (e.g. use of a restricted set of control structures); we

offer the definition of a uniformly implemented loop as an at-

tempt at a characterization of a semantically well structured

program.

-Ii

Generalizing Specifications For Uniformly Implemented Loops

9. References

[Basu 80]
Basu, S. A Note on Synthesis of Inductive Assertions, IEEE
Transactions on Software Engineering, SE-6 (January, 198T-.

[Basu & Misra 751
Basu, S. and Misra, J. Proving Loop Programs, IEEE Transac-
tions on Software Engineering, SE-i (March, 1973T-.

[Basu & Misra 761
Basu, S. K. and Misra, J. Some Classes of Naturally Prov-
able Programs, Proc. 2nd International Conf. on Software
2M., San Francisco, Oc-.1976.-

[Gries 791
Gries, D. Is Sometime Ever Better Than Alway?, Transactions
on Programming Languages and Systems, Vol. 1, No. 2, Oct
I779.

[Hoare 591

Hoare, C. A. R. An Axiomatic Basis for Computer Program-r ming, CAC!, 12 (October 1959), pp. 576-583.

[Mills 721
rills, H. D. Mathematical Foundations Lor Structurec Pro-
gramming, IB71 Federal Systems Division, FSC 72-6012 (1972).

(',ills 75]
-:ills, 1. 1. The *:ew Math of Computer Programming, 1A::, IS
(January 1975).

[:lisra 73]

:isra, J. Some Aspects of the Ver-fication oF Loop Zomputa-
tions, IEEE T ransactions on Software Engineering, S'2-4 (17o-
vember 9-7T, pp. 478-4G.

[(2isra 79]
":isra, J. Systenatic Verification of simple Lnoos, Unver-
sity of 7exas Technical .eport -R-97, %larch 1S79.

[:!orris & 'Teqreit 771
:[orris, J. {. andj :eg'reit, 3. ubgoal induction, C.C"' 0
(April 1977) , pp. 209-222.

[:egbreit 77]
wegbreit, 3. Zomple:,ity of Synthesizirg inu.ctive A\ser-
tions, J\C ., Vol. 24 (July 1977), pp. 04-312

-37-

DATE

FILMED

